ULRICH GERHARDT

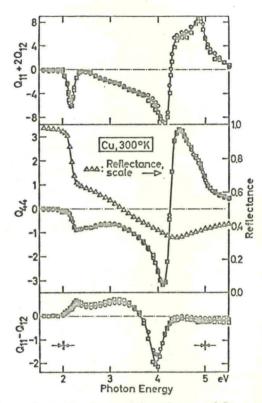


FIG. 7. The relative change of the reflectance of Cu per strain for a change in volume $(Q_{11}+2Q_{12})$ and for trigonal (Q_{44}) and tor a change in volume $(Q_{11}+Q_{12})$ and for fingular (Q_{41}) and tetragonal $(Q_{11}-Q_{12})$ shear strain, evaluated from the six func-tions of Fig. 6 as indicated in Table II. The definition of the functions Q_{ij} is given in Table I. The room-temperature reflect-ance of Cu is also included.

these six measured functions is that of three functions only, e.g., Q11+2Q12, Q44, and Q11-Q12 as given in Table I. There are in fact two measurements for each of the independent functions. Table II lists the measurements that were used to determine the Qij; Fig. 7 gives the three functions, together with the reflectance for zero strain. The deviations between points belonging to the same function but originating from different measurements is small; the error signal per strain along the stress axis, estimated from the remaining deviations is approximately ± 0.2 . This is about 2% of the maximum signal observed which is $Q_{11}+2Q_{12}=9$ at $\hbar\omega = 4.15 \text{ eV}.$

Figure 8 contains the change of ε_2 resulting from the three independent symmetry distortions, expressed in terms of W_{ij} (see Table I). The function ϵ_2 for zero strain is also included. The quantities Wij were obtained from a Kramers-Kronig analysis of the Qij. The values for Q_{ij} for $h\omega < 1.5$ eV and $h\omega > 5.5$ eV are not known. The functions Q_{ij} are zero between 2 and 1.5 eV. The contribution of the free carrier absorption to Qij remains small further in the infrared.¹¹ We therefore used $Q_{ij}=0$ as the extrapolation below 1.5 eV. The functions Q_{ij} are small at 5.5 eV, but they are not zero. There are probably nonzero values further in the ultraviolet. In doing the Kramers-Kronig transform, we joined the

TABLE II. Reduction of the measured relative change of the reflectance to the piezo-optical constants Qij.

Qij	Determined from	Stress axis	Pointsis Fig. 7	11° a 13° a
$Q_{11}+2Q_{12}$	$\frac{\Delta R/R^{11}+2\Delta R/R^{12}}{\Delta R/R^{11}+2\Delta R/R^{12}}$	[111] [001]	Circles Squares	11 6
Q44	$ \Delta R/R^{11} - \Delta R/R^{11} $ $ 2\Delta R/R^{11} + \Delta R/\Delta^{1} \text{ and } Q_{11} + 2Q_{12} $	[111]	Circles Squares	The
Q11-Q12	$\frac{\Delta R/R^{11} - \Delta R/R^{1}}{\Delta R/R^{1}}$ and $Q_{11} + 2Q_{12}$	[001]	Circles Squares	ptic

functions Q_{ij} smoothly with the zero line for $h\omega > 5.5$ cV In order to evaluate the error introduced by the approximation, another Kramers-Kronig transform done on $Q_{11}+2Q_{12}$. This time the function was extrapolated to the minimum $Q_{11}+2Q_{12}=-2$ at 6 eV and joined smoothly with the zero line above 6.5 eV. T deviation in $W_{11}+2W_{12}$ for the two extrapolations 5 at 5.5 eV; this is 6 % of the maximum value (81.5 at 4.3 eV). The weighting function in the Kramers-Kronic integral assures that the error due to the extrapolation decreases with decreasing energy. The error bars near 5.5 eV in Fig. 8 give the deviation due to the extrapola tion discussed above, whereas the ones at 3.5 eV give the uncertainty produced by the error signal in $\Delta R \neq$

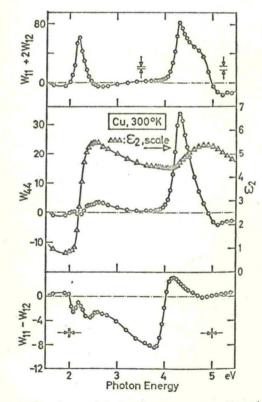


FIG. 8. The change of the imaginary part of the dielectric c stant of Cu per strain for a change in volume $(W_{11}+2W_{12}) = 1$ for trigonal (W_{41}) and tetragonal $(W_{11}-W_{12})$ shear strain a the imaginary part of the dielectric constant. The definition the functions W_{ij} is given in Table I.

656

172 172

T a.e

tran

We

abse

the

spir

four

leg

leg

ií 1

cen

not

iv

In

spl

T